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Chapter 9
Streamflow and Reservoir Routing

9-1. General

a. Routing is a process used to predict the temporal
and spatial variations of a flood hydrograph as it moves
through a river reach or reservoir. The effects of storage
and flow resistance within a river reach are reflected by
changes in hydrograph shape and timing as the floodwave
moves from upstream to downstream. Figure 9-1 shows
the major changes that occur to a discharge hydrograph as
a floodwave moves downstream.

b. In general, routing techniques may be classified
into two categories: hydraulic routing, and hydrologic
routing. Hydraulic routing techniques are based on the
solution of the partial differential equations of unsteady
open channel flow. These equations are often

referred to as the St. Venant equations or the dynamic
wave equations. Hydrologic routing employs the continu-
ity equation and an analytical or an empirical relationship
between storage within the reach and discharge at the
outlet.

c. Flood forecasting, reservoir and channel design,
floodplain studies, and watershed simulations generally
utilize some form of routing. Typically, in watershed
simulation studies, hydrologic routing is utilized on a
reach-by-reach basis from upstream to downstream. For
example, it is often necessary to obtain a discharge hydro-
graph at a point downstream from a location where a
hydrograph has been observed or computed. For such
purposes, the upstream hydrograph is routed through the
reach with a hydrologic routing technique that predicts
changes in hydrograph shape and timing. Local flows are
then added at the downstream location to obtain the total
flow hydrograph. This type of approach is adequate as
long as there are no significant backwater effects or

Figure 9-1. Discharge hydrograph routing effects
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discontinuities in the water surface because of jumps or
bores. When there are downstream controls that will have
an effect on the routing process through an upstream
reach, the channel configuration should be treated as one
continuous system. This can only be accomplished with a
hydraulic routing technique that can incorporate backwater
effects as well as internal boundary conditions, such as
those associated with culverts, bridges, and weirs.

d. This chapter describes several different hydraulic
and hydrologic routing techniques. Assumptions, limita-
tions, and data requirements are discussed for each. The
basis for selection of a particular routing technique is
reviewed, and general calibration methodologies are pre-
sented. This chapter is limited to discussions on 1-D flow
routing techniques in the context of flood-runoff analysis.
The focus of this chapter is on discharge (flow) rather
than stage (water surface elevation). Detailed presentation
of routing techniques and applications focused on stage
calculations can be found in EM 1110-2-1416.

9-2. Hydraulic Routing Techniques

a. The equations of motion. The equations that
describe 1-D unsteady flow in open channels, the Saint
Venant equations, consist of the continuity equation,
Equation 9-1, and the momentum equation, Equation 9-2.
The solution of these equations defines the propagation of
a floodwave with respect to distance along the channel
and time.
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where

A = cross-sectional flow area

V = average velocity of water

x = distance along channel

B = water surface width

y = depth of water

t = time

q = lateral inflow per unit length of channel

Sf = friction slope

So = channel bed slope

g = gravitational acceleration

Solved together with the proper boundary conditions,
Equations 9-1 and 9-2 are the complete dynamic wave
equations. The meaning of the various terms in the
dynamic wave equations are as follows (Henderson 1966):

(1) Continuity equation.
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(2) Momentum equation.
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(3) Dynamic wave equations. The dynamic wave
equations are considered to be the most accurate and
comprehensive solution to 1-D unsteady flow problems in
open channels. Nonetheless, these equations are based on
specific assumptions, and therefore have limitations. The
assumptions used in deriving the dynamic wave equations
are as follows:

9-2



EM 1110-2-1417
31 Aug 94

(a) Velocity is constant and the water surface is hori-
zontalacrossany channel section.

(b) All flows are gradually varied with hydrostatic
pressure prevailing at all points in the flow, such that
vertical accelerations can be neglected.

(c) No lateral secondary circulation occurs.

(d) Channel boundaries are treated as fixed; therefore,
no erosion or deposition occurs.

(e) Water is of uniform density, and resistance to
flow can be described by empirical formulas, such as
Manning’s and Chezy’s equation.

(f) The dynamic wave equations can be applied to a
wide range of 1-D flow problems; such as, dam break
floodwave routing, forecasting water surface elevations
and velocities in a river system during a flood, evaluating
flow conditions due to tidal fluctuations, and routing
flows through irrigation and canal systems. Solution of
the full equations is normally accomplished with an
explicit or implicit finite difference technique. The equa-
tions are solved for incremental times ( t) and incremen-
tal distances ( x) along the waterway.

b. Approximations of the full equations.Depending
on the relative importance of the various terms of the
momentum Equation 9-2, the equation can be simplified
for various applications. Approximations to the full
dynamic wave equations are created by combining the
continuity equation with various simplifications of the
momentum equation. The most common approximations
of the momentum equation are:

The use of approximations to the full equations for
unsteady flow can be justified when specific terms in the
momentum equation are small in comparison to the bed
slope. This is best illustrated by an example taken from
Henderson’s book Open Channel Flow (1966).
Henderson computed values for each of the terms on the
right-hand side of the momentum equation for a steep
alluvial stream:
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Magnitude (ft/mi): 26 .5 .12-.25 .05

These figures relate to a very fast rising hydrograph in
which the flow increased from 10,000 to 150,000 cfs and
decreased again to 10,000 cfs within 24 hr. Even in this
case, where changes in depth and velocity with respect to
distance and time are relatively large, the last three terms
are still small in comparison to the bed slope. For this
type of flow situation (steep stream), an approximation of
the full equations would be appropriate. For flatter
slopes, the last three terms become increasingly more
important.

(1) Kinematic wave approximation. Kinematic flow
occurs when gravitational and frictional forces achieve a
balance. In reality, a true balance between gravitational
and frictional forces never occurs. However, there are
flow situations in which gravitational and frictional forces
approach an equilibrium. For such conditions, changes in
depth and velocity with respect to time and distance are
small in magnitude when compared to the bed slope of
the channel. Therefore, the terms to the right of the bed
slope in Equation 9-3 are assumed to be negligible. This
assumption reduces the momentum equation to the
following:

(9-4)Sf So

Equation 9-4 essentially states that the momentum of the
flow can be approximated with a uniform flow assump-
tion as described by Manning’s or Chezy’s equation.
Manning’s equation can be written in the following form:

(9-5)Q αA m
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where α and m are related to flow geometry and surface
roughness

Since the momentum equation has been reduced to a
simple functional relationship between area and discharge,
the movement of a floodwave is described solely by the
continuity equation, written in the following form:

(9-6)∂A
∂t

∂Q
∂x

q

Then by combining Equations 9-5 and 9-6, the governing
kinematic wave equation is obtained as:
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Because of the steady uniform flow assumptions, the
kinematic wave equations do not allow for hydrograph
diffusion, just simple translation of the hydrograph in
time. The kinematic wave equations are usually solved
by explicit or implicit finite difference techniques. Any
attenuation of the peak flow that is computed using the
kinematic wave equations is due to errors inherent in the
finite difference solution scheme.

(a) The application of the kinematic wave equation is
limited to flow conditions that do not demonstrate appre-
ciable hydrograph attenuation. In general, the kinematic
wave approximation works best when applied to steep
(10 ft/mile or greater), well defined channels, where the
floodwave is gradually varied.

(b) The kinematic wave approach is often applied in
urban areas because the routing reaches are generally
short and well defined (i.e., circular pipes, concrete lined
channels, etc.).

(c) The kinematic wave equations cannot handle
backwater effects since, with a kinematic model flow,
disturbances can only propagate in the downstream direc-
tion. All of the terms in the momentum equation that are
used to describe the propagation of the floodwave
upstream (backwater effects) have been excluded.

(2) Diffusion wave approximation. Another common
approximation of the full dynamic wave equations is the
diffusion wave analogy. The diffusion wave model util-
izes the continuity Equation 9-1 and the following simpli-
fied form of the momentum equation:
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The diffusion wave model is a significant improvement
over the kinematic wave model because of the inclusion
of the pressure differential term in Equation 9-8. This
term allows the diffusion model to describe the attenua-
tion (diffusion effect) of the floodwave. It also allows the
specification of a boundary condition at the downstream
extremity of the routing reach to account for backwater
effects. It does not use the inertial terms (last two terms)
from Equation 9-2 and, therefore, is limited to slow to
moderately rising floodwaves (Fread 1982). However,
most natural floodwaves can be described with the diffu-
sion form of the equations.

(3) Quasi-steady dynamic wave approximation. The
third simplification of the full dynamic wave equations is
the quasi-steady dynamic wave approximation. This
model utilizes the continuity equation, Equation 9-1, and
the following simplification of the momentum equation:
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In general, this simplification of the dynamic wave equa-
tions is not used in flood routing. This form of the
momentum equation is more commonly used in steady
flow-water surface profile computations. In the case of
flood routing, the last two terms on the momentum equa-
tion are often opposite in sign and tend to counteract each
other (Fread 1982). By including the convective accelera-
tion term and not the local acceleration term, an error is
introduced. This error is of greater magnitude than the
error that results when both terms are excluded, as in the
diffusion wave model. For steady flow-water surface
profiles, the last term of the momentum equation (changes
in velocity with respect to time) is assumed to be zero.
However, changes in velocity with respect to distance are
still very important in the calculation of steady flow-water
surface profiles.

c. Data requirements. In general, the data require-
ments of the various hydraulic routing techniques are
virtually the same. However, the amount of detail that is
required for each type of data will vary depending upon
the routing technique being used and the situation it is
being applied to. The basic data requirements for hydrau-
lic routing techniques are the following:
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(1) Flow data (hydrographs).

(2) Channel cross sections and reach lengths.

(3) Roughness coefficients.

(4) Initial and boundary conditions.

(a) Flow data consist of discharge hydrographs from
upstream locations as well as lateral inflow and tributary
flow for all points along the stream.

(b) Channel cross sections are typically surveyed
sections that are perpendicular to the flow lines. Key
issues in selecting cross sections are the accuracy of the
surveyed data and the spacing of the sections along the
stream. If the routing procedure is utilized to predict
stages, then the accuracy of the cross-sectional dimensions
will have a direct effect on the prediction of the stage. If
the cross sections are used only to route discharge hydro-
graphs, then it is only important to ensure that the cross
section is an adequate representation of the discharge
versus flow area of the section. Simplified cross-sectional
shapes, such as 8-point cross sections or trapezoids and
rectangles, are often used to fit the discharge versus flow
area of a more detailed section. Cross-sectional spacing
affects the level of detail of the results as well as the
accuracy of the numerical solution to the routing equa-
tions. Detailed discussions on cross-sectional spacing can
be found in the reference by the Hydrologic Engineering
Center (HEC) (USACE 1986).

(c) Roughness coefficients for hydraulic routing
models are typically in the form of Manning’s n values.
Manning’s coefficients have a direct impact on the travel
time and amount of diffusion that will occur when routing
a flood hydrograph through a channel reach. Roughness
coefficients will also have a direct impact on predicted
stages.

(d) All hydraulic models require that initial and boun-
dary conditions be established before the routing can
commence. Initial conditions are simply stated as the
conditions at all points in the stream at the beginning of
the simulation. Initial conditions are established by speci-
fying a base flow within the channel at the start of the
simulation. Channel depths and velocities can be calcu-
lated through steady-state backwater computations or a
normal depth equation (e.g., Manning’s equation).
Boundary conditions are known relationships between
discharge and time and/or discharge and stage. Hydraulic
routing computations require the specification of
upstream, downstream, and internal boundary conditions

to solve the equations. The upstream boundary condition
is the discharge (or stage) versus time relationship of the
hydrograph to be routed through the reach. Downstream
boundary conditions are usually established with a steady-
state rating curve (discharge versus depth relationship) or
through normal depth calculations (Manning’s equation).
Internal boundary conditions consist of lateral inflow or
tributary flow hydrographs, as well as depth versus dis-
charge relationships for hydraulic structures within the
river reach.

9-3. Hydrologic Routing Techniques

Hydrologic routing employs the use of the continuity
equation and either an analytical or an empirical relation-
ship between storage within the reach and discharge at the
outlet. In its simplest form, the continuity equation can
be written as inflow minus outflow equals the rate of
change of storage within the reach:

(9-10)I O
∆S
∆t

where

I = the average inflow to the reach during∆t

O = the average outflow from the reach during∆t

S = storage within the reach

a. Modified puls reservoir routing.

(1) One of the simplest routing applications is the
analysis of a floodwave that passes through an
unregulated reservoir (Figure 9-2a). The inflow hydro-
graph is known, and it is desired to compute the outflow
hydrograph from the reservoir. Assuming that all gate
and spillway openings are fixed, a unique relationship
between storage and outflow can be developed, as shown
in Figure 9-2b.

(2) The equation defining storage routing, based on
the principle of conservation of mass, can be written in
approximate form for a routing intervalt. Assuming the
subscripts “1” and “2” denote the beginning and end of
the routing interval, the equation is written as follows:

(9-11)O1 O2
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I1 I2

2

S2 S1

∆t
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Figure 9-2. Reservoir storage routing

The known values in this equation are the inflow hydro-
graph and the storage and discharge at the beginning of
the routing interval. The unknown values are the storage
and discharge at the end of the routing interval. With two
unknowns (O2 and S2) remaining, another relationship is
required to obtain a solution. The storage-outflow rela-
tionship is normally used as the second equation. How
that relationship is derived is what distinguishes various
storage routing methods.

(3) For an uncontrolled reservoir, outflow and water
in storage are both uniquely a function of lake elevation.
The two functions can be combined to develop a storage-
outflow relationship, as shown in Figure 9-3. Elevation-
discharge relationships can be derived directly from
hydraulic equations. Elevation-storage relationships are
derived through the use of topographic maps. Elevation-
area relationships are computed first, then either average
end-area or conic methods are used to compute volumes.

(4) The storage-outflow relationship provides the out-
flow for any storage level. Starting with a nearly empty
reservoir, the outflow capability would be minimal. If the
inflow is less than the outflow capability, the water would
flow through. During a flood, the inflow increases and
eventually exceeds the outflow capability. The difference
between inflow and outflow produces a change in storage.
In Figure 9-4, the difference between the inflow and the
outflow (on the rising side of the outflow hydrograph)
represents the volume of water entering storage.

(5) As water enters storage, the outflow capability
increases because the pool level increases. Therefore, the
outflow increases. This increasing outflow with increas-
ing water in storage continues until the reservoir reaches a
maximum level. This will occur the moment that the
outflow equals the inflow, as shown in Figure 9-4. Once
the outflow becomes greater than the inflow, the storage
level will begin dropping. The difference between the
outflow and the inflow hydrograph on the recession side
reflects water withdrawn from storage.

(6) The modified puls method applied to reservoirs
consists of a repetitive solution of the continuity equation.
It is assumed that the reservoir water surface remains
horizontal, and therefore, outflow is a unique function of
reservoir storage. The continuity equation, Equation 9-11,
can be manipulated to get both of the unknown variables
on the left-hand side of the equation:

(9-12)
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Since I is known for all time steps, andO1 and S1 are
known for the first time step, the right-hand side of the
equation can be calculated. The left-hand side of the
equation can be solved by trial and error. This is accom-
plished by assuming a value for eitherS2 or O2, obtaining
the corresponding value from the storage-outflow relation-
ship, and then iterating until Equation 9-12 is satisfied.
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Figure 9-3. Reservoir storage-outflow curve

Figure 9-4. Reservoir routing example

Rather than resort to this iterative procedure, a value of
t is selected and points on the storage-outflow curve are

replotted as the “storage-indication” curve shown in
Figure 9-5. This graph allows for a direct determination
of the outflow (O2) once a value of storage indication
(S2/ t + O2/2) has been calculated from Equation 9-12

(Viessman et al. 1977). The numerical integration of
Equation 9-12 and Figure 9-5 is illustrated as an example
in Table 9-1. The stepwise procedure for applying the
modified puls method to reservoirs can be summarized as
follows:
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Figure 9-5. Storage-indication curve

(a) Determine a composite discharge rating curve for
all of the reservoir outlet structures.

(b) Determine the reservoir storage that corresponds
with each elevation on the rating curve for reservoir out-
flow.

(c) Select a time step and construct a storage-indica-
tion versus outflow curve [(S/ t) + (O/2)] versusO.

(d) Route the inflow hydrograph through the reservoir
based on Equation 9-12 and the storage-indication curve.

(e) Compare the results with historical events to
verify the model.

b. Modified puls channel routing.Routing in natural
rivers is complicated by the fact that storage in a river
reach is not a function of outflow alone. During the pass-
ing of a floodwave, the water surface in a channel is not
uniform. The storage and water surface slope within a
river reach, for a given outflow, is greater during the
rising stages of a floodwave than during the falling
(Figure 9-6). Therefore, the relationship between storage

and discharge at the outlet of a channel is not a unique
relationship, rather it is a looped relationship. An exam-
ple storage-discharge function for a river is shown in
Figure 9-7.

(1) Application of the modified puls method to
rivers. To apply the modified puls method to a channel
routing problem, the storage within the river reach is
approximated with a series of “cascading reservoirs” (Fig-
ure 9-8). Each reservoir is assumed to have a level pool
and, therefore, a unique storage-discharge relationship.
The cascading reservoir approach is capable of approxi-
mating the looped storage-outflow effect when evaluating
the river reach as a whole. The rising and falling flood-
wave is simulated with different storage levels in the
cascade of reservoirs, thus producing a looped storage-
outflow function for the total river reach. This is depicted
graphically in Figure 9-9.

(2) Determination of the storage-outflow
relationship.

(a) Determining the storage-outflow relationship for
a river reach is a critical part of the modified puls proce-
dure. In river reaches, storage-outflow relationships can
be determined from one of the following:

• steady-flow profile computations,

• observed water surface profiles,

• normal-depth calculations,

• observed inflow and outflow hydrographs, and

• optimization techniques applied to observed
inflow and outflow hydrographs.

(b) Steady-flow water surface profiles, computed
over a range of discharges, can be used to determine
storage-outflow relationships in a river reach
(Figure 9-10). In this illustration, a known hydrograph at
A is to be routed to location B. The storage-outflow
relationship required for routing is determined by comput-
ing a series of water surface profiles, corresponding to a
range of discharges. The range of discharges should
encompass the range of flows that will be routed through
the river reach. The storage volumes are computed by
multiplying the cross-sectional area, under a specific flow
profile, by the channel reach lengths. Volumes are
calculated for each flow profile and then plotted against
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Table 9-1
Storage Routing Calculation

(1) (2) (3) (4) (5) (6) (7)

Time
(hr)

Inflow
(cfs)

Average
Inflow
(cfs) (cfs)

S
∆t

O
2 Outflow

(cfs) (cfs)

S
∆t S

(acre-ft)

0 3,000 8,600 3,000 7,100 1,760

3,130

3 3,260 8,730 3,150 7,155 1,774

3,445

6 3,630 9,025 3,400 7,325 1,816

3,825

9 4,020 9,450 3,850 7,525 1,866

4,250

12 4,480 9,850 4,300 7,700 1,909

.

.

etc.

the corresponding discharge at the outlet. If channel or
levee modifications will have an effect on the routing
through the reach,modifications can be made to the cross
sections, water surface profiles recalculated, and a revised
storage-outflow relationship can be developed. The
impacts of the channel or levee modification can be
approximated by routing floods with both pre- and post-
project storage-outflow relationships.

(c) Observed water surface profiles, obtained from
high water marks, can be used to compute storage-outflow
relationships. Sufficient stage data over a range of floods
are required for this type of calculation; however, it is not
likely that enough data would be available over the range
of discharges needed to compute an adequate storage
discharge relationship. If a few observed profiles are
available, they can be used to calibrate a steady-flow
water surface profile model for the channel reach of
interest. Then the water surface profile model could be
used to calculate the appropriate range of values to calcu-
late the storage-outflow relationship.

(d) Normal depth associated with uniform flow does
not exist in natural streams; however, the concept can be
used to estimate water depth and storage in natural rivers

if uniform flow conditions can reasonably be assumed.
With a typical cross section, Manning’s equation is solved
for a range of discharges, given appropriate “n” values
and an estimated slope of the energy grade line. Under
the assumption of uniform flow conditions, the energy
slope is considered equal to the average channel bed
slope; therefore, this approach should not be applied in
backwater areas.

(e) Observed inflow and outflow hydrographs can be
used to compute channel storage by an inverse process of
flood routing. When both inflow and outflow are known,
the change in storage can be computed, and from that a
storage versus outflow function can be developed. Tribu-
tary inflow, if any, must also be accounted for in this
calculation. The total storage is computed from some
base level storage at the beginning or end of the routing
sequence.

(f) Inflow and outflow hydrographs can also be used
to compute routing criteria through a process of iteration
in which an initial set of routing criteria is assumed, the
inflow hydrograph is routed, and the results are evaluated.
The process is repeated as necessary until a suitable fit of
the routed and observed hydrograph is obtained.
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Figure 9-6. Rising and falling floodwave

Figure 9-7. Looped storage-outflow relationship for a river reach
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Figure 9-8. Cascade of reservoirs, depicting storage routing in a channel

Figure 9-9. Modified puls approximation of the rising and falling floodwaves
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Figure 9-10. Storage-outflow relationships

(3) Determining the number of routing steps. In
reservoir routing, the modified puls method is applied
with one routing step. This is under the assumption that
the travel time through the reservoir is smaller than the
computation interval t. In channel routing, the travel
time through the river reach is often greater than the
computation interval. When this occurs, the channel must
be broken down into smaller routing steps to simulate the
floodwave movement and changes in hydrograph shape.
The number of steps (or reach lengths) affects the attenua-
tion of the hydrograph and should be obtained by calibra-
tion. The maximum amount of attenuation will occur
when the channel routing computation is done in one step.
As the number of routing steps increases, the amount of
attenuation decreases. An initial estimate of the number
of routing steps (NSTPS) can be obtained by dividing the
total travel time (K) for the reach by the computation
interval t.

K
L
Vw

(9-13)NSTPS
K
∆t

where

K = floodwave travel time through the reach

L = channel reach length

Vw = velocity of the floodwave (not average velocity)

NSTPS= number of routing steps

The time interval t is usually determined by ensuring
that there is a sufficient number of points on the rising
side of the inflow hydrograph. A general rule of thumb is
that the computation interval should be less than 1/5 of
the time of rise (tr) of the inflow hydrograph.
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(9-14)∆t ≤
tr

5

c. Muskingum method.The Muskingum method was
developed to directly accommodate the looped relation-
ship between storage and outflow that exists in rivers.
With the Muskingum method, storage within a reach is
visualized in two parts: prism storage and wedge storage.
Prism storage is essentially the storage under the steady-
flow water surface profile. Wedge storage is the addi-
tional storage under the actual water surface profile. As
shown in Figure 9-11, during the rising stages of the
floodwave the wedge storage is positive and added to the
prism storage. During the falling stages of a floodwave,
the wedge storage is negative and subtracted from the
prism storage.

(1) Development of the Muskingum routing equation.

(a) Prism storage is computed as the outflow (O)
times the travel time through the reach (K). Wedge stor-
age is computed as the difference between inflow and
outflow (I-O) times a weighting coefficientX and the
travel timeK. The coefficientK corresponds to the travel
time of the floodwave through the reach. The parameter
X is a dimensionless value expressing a weighting of the
relative effects of inflow and outflow on the storage (S)
within the reach. Thus, the Muskingum method defines
the storage in the reach as a linear function of weighted
inflow and outflow:

S prism storage wedge storage

S KO KX(I O)

(9-15)S K [XI (1 X)O]

where

S = total storage in the routing reach

O = rate of outflow from the routing reach

I = rate of inflow to the routing reach

K = travel time of the floodwave through the reach

X = dimensionless weighting factor, ranging from
0.0 to 0.5

(b) The quantity in the brackets of Equation 9-15 is
considered an expression of weighted discharge. When
X = 0.0, the equation reduces toS = KO, indicating that
storage is only a function of outflow, which is equivalent
to level-pool reservoir routing with storage as a linear
function of outflow. WhenX = 0.5, equal weight is given
to inflow and outflow, and the condition is equivalent to a
uniformly progressive wave that does not attenuate. Thus,
“0.0” and “0.5” are limits on the value ofX, and within
this range the value ofX determines the degree of attenu-
ation of the floodwave as it passes through the routing

Figure 9-11. Muskingum prism and wedge storage concept
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reach. A value of “0.0” produces maximum attenuation,
and “0.5” produces pure translation with no attenuation.

(c) The Muskingum routing equation is obtained by
combining Equation 9-15 with the continuity equation,
Equation 9-11, and solving forO2.

(9-16)O2 C1I2 C2I1 C3O1

The subscripts 1 and 2 in this equation indicate the begin-
ning and end, respectively, of a time intervalt. The
routing coefficientsC1, C2, andC3 are defined in terms of
t, K, andX.

(9-17)C1

∆t 2KX
2K(1 X) ∆t

(9-18)C2

∆t 2KX
2K(1 X) ∆t

(9-19)C3

2K(1 X) ∆t
2K(1 X) ∆t

Given an inflow hydrograph, a selected computation inter-
val t, and estimates for the parametersK and X, the
outflow hydrograph can be calculated.

(2) Determination of MuskingumK and X. In a
gauged situation, the MuskingumK and X parameters can
be calculated from observed inflow and outflow hydro-
graphs. The travel time,K, can be estimated as the inter-
val between similar points on the inflow and outflow
hydrographs. The travel time of the routing reach can be
calculated as the elapsed time between centroid of areas
of the two hydrographs, between the hydrograph peaks, or
between midpoints of the rising limbs. AfterK has been
estimated, a value forX can be obtained through trial and
error. Assume a value forX, and then route the inflow
hydrograph with these parameters. Compare the routed
hydrograph with the observed outflow hydrograph. Make
adjustments toX to obtain the desired fit. Adjustments to
the original estimate ofK may also be necessary to obtain
the best overall fit between computed and observed hydr-
ographs. In an ungauged situation, a value forK can be
estimated as the travel time of the floodwave through the
routing reach. The floodwave velocity (Vw) is greater
than the average velocity at a given cross section for a
given discharge. The floodwave velocity can be estimated
by a number of different techniques:

(a) Using Seddon’s law, a floodwave velocity can be
approximated from the discharge rating curve at a station
whose cross section is representative of the routing reach.
The slope of the discharge rating curve is equal todQ/dy.
The floodwave velocity, and therefore the travel timeK,
can be estimated as follows:

(9-20)Vw

1
B

dQ
dy

(9-21)K
L
Vw

where

Vw = floodwave velocity, in feet/second

B = top width of the water surface

L = length of the routing reach, in feet

(b) Another means of estimating floodwave velocity
is to estimate the average velocity (V) and multiply it by a
ratio. The average velocity can be calculated from
Manning’s equation with a representative discharge and
cross section for the routing reach. For various channel
shapes, the floodwave velocity has been found to be a
direct ratio of the average velocity.

Channel shape Ratio Vw/V
Wide rectangular 1.67
Wide parabolic 1.44
Triangular 1.33

For natural channels, an average ratio of 1.5 is suggested.
Once the wave speed has been estimated, the travel time
(K) can be calculated with Equation 9-21.

(c) Estimating the MuskingumX parameter in an
ungauged situation can be very difficult. X varies
between 0.0 and 0.5, with 0.0 providing the maximum
amount of hydrograph attenuation and 0.5 no attenuation.
Experience has shown that for channels with mild slopes
and flows that go out of bank,X will be closer to 0.0.
For steeper streams, with well defined channels that do
not have flows going out of bank,X will be closer to 0.5.
Most natural channels lie somewhere in between these
two limits, leaving a lot of room for “engineering judg-
ment.” One equation that can be used to estimate the
Muskingum X coefficient in ungauged areas has been
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developed by Cunge (1969). This equation is taken from
the Muskingum-Cunge channel routing method, which is
described in paragraph 9-3e. The equation is written as
follows:

(9-22)X
1
2











1
Qo

BSoc∆x

where

Qo = reference flow from the inflow
hydrograph

c = floodwave speed

So = friction slope or bed slope

B = top width of the flow area

x = length of the routing subreach

The choice of which flow rate to use in this equation is
not completely clear. Experience has shown that a refer-
ence flow based on average values (midway between the
base flow and the peak flow) is in general the most suit-
able choice. Reference flows based on peak flow values
tend to accelerate the wave much more than it would in
nature, while the converse is true if base flow reference
values are used (Ponce 1983).

(3) Selection of the number of subreaches. The
Muskingum equation has a constraint related to the rela-
tionship between the parameterK and the computation
interval t. Ideally, the two should be equal, butt
should not be less than 2KX to avoid negative coefficients
and instabilities in the routing procedure.

(9-23)2KX < ∆t ≤K

A long routing reach should be subdivided into
subreaches so that the travel time through each subreach
is approximately equal to the routing intervalt. That is:

Number of subreaches
K
∆t

This assumes that factors such as channel geometry and
roughness have been taken into consideration in determin-
ing the length of the routing reach and the travel timeK.

d. Working R&D routing procedure.The Working
R&D procedure is a storage routing technique that accom-
modates the nonlinear nature of floodwave movement in
natural channels. The method is useful in situations
where the use of a variableK (reach travel time) would
assist in obtaining accurate answers. A nonlinear storage-
outflow relationship indicates that a variableK is neces-
sary. The method is also useful in situations wherein the
horizontal reservoir surface assumption of the modified
puls procedure is not applicable, such as normally occurs
in natural channels.

(1) The working R&D procedure could be termed
“Muskingum with a variableK” or “modified puls with
wedge storage.” For a straight line storage-discharge
(weighted discharge) relation, the procedure is the same
solution as the Muskingum method. ForX = 0, the proce-
dure is identical to Modified Puls.

(2) The basis for the procedure derives from the
concept of a “working discharge,” which is a hypothetical
steady flow that would result in the same natural channel
storage that occurs with the passage of a floodwave.
Figure 9-12 illustrates this concept.

where

I = reach inflow

O = reach outflow

D = working value discharge or simply working
discharge

(3) The wedge storage (WS) may be computed in
the following two ways: As in the Muskingum technique
whereX is a weighting factor andK is reach travel time:

(9-24)WS KX (I O)

or using the working discharge (D) concept:

(9-25)WS K (D O)

equating and solving forO:

(9-26)K (D O) KX (I O)
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Figure 9-12. Illustration of the “working discharge” concept

or

(9-27)O D
X

1 X
(I D)

The continuity equation may be approximated by:

(9-28)S2 S1

∆t
0.5 (I1 I2) 0.5 (O1 O2)

where

S = storage

t = time increment

Substituting Equation 9-27 into 9-28 and appending the
appropriate subscripts to denote beginning and end of
period and performing the appropriate algebra yields:

(9-29)
0.5∆t(I1 I2) [S1(1 X) 0.5D1∆t]

[S2(1 X) 0.5D2∆t]

Let

(9-30)R S (1 X) 0.5D∆t

where R is termed the “working value of storage” or
simply working storage and represents an index of the
true natural storage. Equation 9-29 may therefore be
written:

(9-31)R2 R1 0.5∆t (I1 I2) D1∆t

transposing t results in the equation used in routing
computations:

(9-32)R2

∆t

R1

∆t
0.5 (I1 I2) D1

The form of the relationship forR (working discharge) is
analogous to storage indication in the modified puls pro-
cedure. R2/ t may be computed from information known
at the beginning of a routing interval. The outflow at the
end of the routing interval may then be determined from a
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rating curve of working storage versus working discharge.
The cycle is then repeated stepping forward in time.

(4) The solution scheme using this concept requires
development of a rating curve of working storage versus
working discharge as stated above. The following column
headings are helpful in developing the function when
storage-outflow data are available.

1 2 3

Storage(S) S
∆t

(1 X) Working
Discharge(D)

4 5
D
2

S
∆t

(1 X) D
2

(5) Column 2 of the tabulation is obtained from col-
umn 1 by using an appropriate conversion factor and
appropriateX. The conversion factor of 1 acre-ft/hour =
12.1 cfs is useful in this regard. Column 5 is the sum of
columns 2 and 4. Column 3 is plotted against column 5
on cartesian coordinate paper and a curve drawn through
the plotted points. This represents the working discharge-
working outflow rating curve. An example curve is
shown in Figure 9-13.

(6) The routing of a hydrograph can be performed as
the one shown in Table 9-2. The procedure, in narrative
form is:

• Conditions known at time 1:I1, O1, D1, andR1/ t.

• At time 2, only I2 is known, therefore:

R2

∆t

R1

∆t
0.5 (I1 I2) D1

• Enter working storage, working discharge function,
and read outD2.

• CalculateO2 as follows:

O2 D2

X
1 X

(I2 D2)

• Repeat process until finished.

e. Muskingum-Cunge channel routing. The
Muskingum-Cunge channel routing technique is a nonlin-
ear coefficient method that accounts for hydrograph diffu-
sion based on physical channel properties and the
inflowing hydrograph. The advantages of this method
over other hydrologic techniques are the parameters of the
model are more physically based; the method has been
shown to compare well against the full unsteady flow
equations over a wide range of flow situations (Ponce
1983 and Brunner 1989); and the solution is independent
of the user-specified computation interval. The major
limitations of the Muskingum-Cunge technique are that it
cannot account for backwater effects, and the method
begins to diverge from the full unsteady flow solution
when very rapidly rising hydrographs are routed through
flat channel sections.

(1) Development of equations.

(a) The basic formulation of the equations is derived
from the continuity Equation 9-33 and the diffusion form
of the momentum Equation 9-34:

(9-33)∂A
∂t

∂Q
∂x

ql

(9-34)Sf So

∂Y
∂x

(b) By combining Equations 9-33 and 9-34 and
linearizing, the following convective diffusion equation is
formulated (Miller and Cunge 1975):

(9-35)∂Q
∂t

c
∂Q
∂x

µ ∂2Q

∂x 2
cqL

where

Q = discharge, in cubic feet per second

A = flow area, in square feet

t = time, in seconds

x = distance along the channel, in feet

Y = depth of flow, in feet
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Figure 9-13. Rating curve for working R&D routing

qL = lateral inflow per unit of channel length

Sf = friction slope

So = bed slope

c = the wave celerity in the x direction as defined
below

The wave celerity (c) and the hydraulic diffusivity (µ) are
expressed as follows:

(9-36)c
dQ
dA

(9-37)µ Q
2BSo

whereB is the top width of the water surface. The con-
vective diffusion Equation 9-35 is the basis for the
Muskingum-Cunge method.

(c) In the original Muskingum formulation, with
lateral inflow, the continuity Equation 9-33) is discretized
on the x-t plane (Figure 9-14) to yield:

(9-38)Q n 1
j 1 C1Q

n
j C2Q

n 1
j C3Q

n
j 1 C4QL

It is assumed that the storage in the reach is expressed as
the classical Muskingum storage:

(9-39)S K [XI (1 X)O]
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Table 9-2
Working R&D Routing Example

Time
hr

Inflow
cfs

Average
Inflow

cfs cfs

K
∆ t

0.5(I1 I2) D1
D

cfs
O
cfs

3,000 7,100 3,000 3,000

3,130

3 3,260 7,230 3,100 3,060

3,445

6 3,630 7,575 3,300 3,220

3,825

9 4,020 8,100 3,800 3,745

4,250

12 4,480 8,550 4,400 4,420

where

S = channel storage

K = cell travel time (seconds)

X = weighting factor

I = inflow

O = outflow

Therefore, the coefficients can be expressed as follows:

C1

∆t
K

2X

∆t
K

2(1 X)

C2

∆t
K

2X

∆t
K

2(1 X)

C3

2(1 X) ∆t
K

∆t
K

2(1 X)

C4

2( ∆t
K

)

∆t
K

2(1 X)

QL qL∆X

(d) In the Muskingum equation the amount of diffu-
sion is based on the value ofX, which varies between 0.0
and 0.5. The MuskingumX parameter is not directly
related to physical channel properties. The diffusion
obtained with the Muskingum technique is a function of
how the equation is solved and is therefore considered
numerical diffusion rather than physical. Cunge evaluated
the diffusion that is produced in the Muskingum equation
and analytically solved for the following diffusion
coefficient:

(9-40)µn c ∆x 







1
2

X

In the Muskingum-Cunge formulation, the amount of
diffusion is controlled by forcing the numerical diffusion
to match the physical diffusion of the convective diffusion
Equation 9-35. This is accomplished by setting Equa-
tions 9-37 and 9-40 equal to each other. The
Muskingum-Cunge equation is therefore considered an
approximation of the convective diffusion Equation 9-35.
As a result, the parametersK and X are expressed as
follows (Cunge 1969 and Ponce and Yevjevich 1978):
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Figure 9-14. Discretization of the continuity equation on x-t plane

(9-41)K
∆X
c

(9-42)X
1
2











1 Q
BSoc∆x

(2) Solution of the equations.

(a) The method is nonlinear in that the flow hydrau-
lics (Q, B, c), and therefore the routing coefficients
(C1, C2, C3, and C4) are recalculated for everyx dis-
tance step and t time step. An iterative four-point

averaging scheme is used to solve forc, B, and Q. This
process has been described in detail by Ponce (1986).

(b) Values for t and x are chosen for accuracy
and stability. First, t should be evaluated by looking at
the following three criteria and selecting the smallest
value: (1) the user-defined computation interval, (2) the
time of rise of the inflow hydrograph divided by 20
(Tr/20), and (3) the travel time through the channel reach.
Once t is chosen, x is defined as follows:

(9-43)∆x c∆t
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but x must also meet the following criteria to preserve
consistency in the method (Ponce 1983):

(9-44)∆x < 1
2











c∆t
Qo

BSoc

where Qo is the reference flow andQB is the baseflow
taken from the inflow hydrograph as:

Qo QB 0.50 (Qpeak QB)

(3) Data requirements.

(a) Data for the Muskingum-Cunge method consist of
the following:

• Representative channel cross section.

• Reach length,L.

• Manning roughness coefficients, n (for main
channel and overbanks).

• Friction slope (Sf) or channel bed slope (So).

(b) The method can be used with a simple cross sec-
tion (i.e., trapezoid, rectangle, square, triangle, or circular
pipe) or a more detailed cross section (i.e., cross sections
with a left overbank, main channel, and a right overbank).
The cross section is assumed to be representative of the
entire routing reach. If this assumption is not adequate,
the routing reach should be broken up into smaller sub-
reaches with representative cross sections for each. Reach
lengths are measured directly from topographic maps.
Roughness coefficients (Manning’s n) must be estimated
for main channels as well as overbank areas. If
information is available to estimate an approximate energy
grade line slope (friction slope,Sf), that slope should be
used instead of the bed slope. If no information is avail-
able to estimate the slope of the energy grade line, the
channel bed slope should be used.

(4) Advantages and limitations. The Muskingum-
Cunge routing technique is considered to be a nonlinear
coefficient method that accounts for hydrograph diffusion
based on physical channel properties and the inflowing
hydrograph. The advantages of this method over other
hydrologic techniques are: the parameters of the model
are physically based, and therefore this method will make
for a good ungauged routing technique; several studies
have shown that the method compares very well with the

full unsteady flow equations over a wide range of flow
conditions (Ponce 1983 and Brunner 1989); and the solu-
tion is independent of the user-specified computation
interval. The major limitations of the Muskingum-Cunge
technique are that the method can not account for back-
water effects, and the method begins to diverge from the
complete unsteady flow solution when very rapidly rising
hydrographs (i.e., less than 2 hr) are routed through flat
channel sections (i.e., channel slopes less than 1 ft/mile).
For hydrographs with longer rise times (Tr), the method
can be used for channel reaches with slopes less than
1 ft/mile.

9-4. Applicability of Routing Techniques

a. Selecting the appropriate routing method.With
such a wide range of hydraulic and hydrologic routing
techniques, selecting the appropriate routing method for
each specific problem is not clearly defined. However,
certain thought processes and some general guidelines can
be used to narrow the choices, and ultimately the selection
of an appropriate method can be made.

b. Hydrologic routing method.Typically, in rainfall-
runoff analyses, hydrologic routing procedures are utilized
on a reach-by-reach basis from upstream to downstream.
In general, the main goal of the rainfall-runoff study is to
calculate discharge hydrographs at several locations in the
watershed. In the absence of significant backwater
effects, the hydrologic routing models offer the
advantages of simplicity, ease of use, and computational
efficiency. Also, the accuracy of hydrologic methods in
calculating discharge hydrographs is normally well within
the range of acceptable values. It should be remembered,
however, that insignificant backwater effects alone do not
always justify the use of a hydrologic method. There are
many other factors that must be considered when deciding
if a hydrologic model will be appropriate, or if it is neces-
sary to use a more detailed hydraulic model.

c. Hydraulic routing method. The full unsteady
flow equations have the capability to simulate the widest
range of flow situations and channel characteristics.
Hydraulic models, in general, are more physically based
since they only have one parameter (the roughness coeffi-
cient) to estimate or calibrate. Roughness coefficients can
be estimated with some degree of accuracy from inspec-
tion of the waterway, which makes the hydraulic methods
more applicable to ungauged situations.

d. Evaluating the routing method.There are several
factors that should be considered when evaluating which
routing method is the most appropriate for a given
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situation. The following is a list of the major factors that
should be considered in this selection process:

(1) Backwater effects. Backwater effects can be
produced by tidal fluctuations, significant tributary
inflows, dams, bridges, culverts, and channel constric-
tions. A floodwave that is subjected to the influences of
backwater will be attenuated and delayed in time. Of the
hydrologic methods discussed previously, only the modi-
fied puls method is capable of incorporating the effects of
backwater into the solution. This is accomplished by
calculating a storage-discharge relationship that has the
effects of backwater included in the relationship. Storage-
discharge relationships can be determined from steady
flow-water surface profile calculations, observed water
surface profiles, normal depth calculations, and observed
inflow and outflow hydrographs. All of these techniques,
except the normal depth calculations, are capable of
including the effects of backwater into the storage-dis-
charge relationship. Of the hydraulic methods discussed
in this chapter, only the kinematic wave technique is not
capable of accounting for the influences of backwater on
the floodwave. This is due to the fact that the kinematic
wave equations are based on uniform flow assumptions
and a normal depth downstream boundary condition.

(2) Floodplains. When the flood hydrograph reaches
a magnitude that is greater than the channels carrying
capacity, water flows out into the overbank areas.
Depending on the characteristics of the overbanks, the
flow can be slowed greatly, and often ponding of water
can occur. The effects of the floodplains on the flood-
wave can be very significant. The factors that are impor-
tant in evaluating to what extent the floodplain will
impact the hydrograph are the width of the floodplain, the
slope of the floodplain in the lateral direction, and the
resistance to flow due to vegetation in the floodplain. To
analyze the transition from main channel to overbank
flows, the modeling technique must account for varying
conveyance between the main channel and the overbank
areas. For 1-D flow models, this is normally accom-
plished by calculating the hydraulic properties of the main
channel and the overbank areas separately, then combin-
ing them to formulate a composite set of hydraulic rela-
tionships. This can be accomplished in all of the routing
methods discussed previously except for the Muskingum
method. The Muskingum method is a linear routing
technique that uses coefficients to account for hydrograph
timing and diffusion. These coefficients are usually held
constant during the routing of a given floodwave. While
these coefficients can be calibrated to match the peak
flow and timing of a specific flood magnitude, they can
not be used to model a range of floods that may remain in

bank or go out of bank. When modeling floods through
extremely flat and wide floodplains, the assumption of
1-D flow in itself may be inadequate. For this flow con-
dition, velocities in the lateral direction (across the flood-
plain) may be just as predominant as those in the
longitudinal direction (down the channel). When this
occurs, a two-dimensional (2-D) flow model would give a
more accurate representation of the physical processes.
This subject is beyond the scope of this chapter. For
more information on this topic, the reader is referred to
EM 1110-2-1416.

(3) Channel slope and hydrograph characteristics.
The slope of the channel will not only affect the velocity
of the floodwave, but it can also affect the amount of
attenuation that will occur during the routing process.
Steep channel slopes accelerate the floodwave, while mild
channel slopes are prone to slower velocities and greater
amounts of hydrograph attenuation. Of all the routing
methods presented in this chapter, only the complete
unsteady flow equations are capable of routing flood-
waves through channels that range from steep to
extremely flat slopes. As the channel slopes become
flatter, many of the methods begin to break down. For
the simplified hydraulic methods, the terms in the
momentum equation that were excluded become more
important in magnitude as the channel slope is decreased.
Because of this, the range of applicable channel slopes
decreases with the number of terms excluded from the
momentum equation. As a rule of thumb, the kinematic
wave equations should only be applied to relatively steep
channels (10 ft/mile or greater). Since the diffusion wave
approximation includes the pressure differential term in
the momentum equation, it is applicable to a wider range
of slopes than the kinematic wave equations. The diffu-
sion wave technique can be used to route slow rising
floodwaves through extremely flat slopes. However,
rapidly rising floodwaves should be limited to mild to
steep channel slopes (approximately 1 ft/mile or greater).
This limitation is due to the fact that the acceleration
terms in the momentum equation increase in magnitude as
the time of rise of the inflowing hydrograph is decreased.
Since the diffusion wave method does not include these
acceleration terms, routing rapidly rising hydrographs
through flat channel slopes can result in errors in the
amount of diffusion that will occur. While “rules of
thumb” for channel slopes can be established, it should be
realized that it is the combination of channel slope and
the time of rise of the inflow hydrograph together that
will determine if a method is applicable or not.

(a) Ponce and Yevjevich (1978) established a numer-
ical criteria for the applicability of hydraulic routing
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techniques. According to Ponce, the error due to the use
of the kinematic wave model (error in hydrograph peak
accumulated after an elapsed time equal to the hydrograph
duration) is within 5 percent, provided the following
inequality is satisfied:

(9-45)
TSouo

do

≥ 171

where

T = hydrograph duration, in seconds

So = friction slope or bed slope

uo = reference mean velocity

do = reference flow depth

When applying Equation 9-45 to check the validity of
using the kinematic wave model, the reference values
should correspond as closely as possible to the average
flow conditions of the hydrograph to be routed.

(b) The error due to the use of the diffusion wave
model is within 5 percent, provided the following inequal-
ity is satisfied:

(9-46)TSo











g
do

1/2

≥ 30

where g = acceleration of gravity. For instance, assume
So = 0.001, uo = 3 ft/s, anddo = 10 ft. The kinematic
wave model will apply for hydrographs of duration larger
than 6.59 days. Likewise, the diffusion wave model will
apply for hydrographs of duration larger than 0.19 days.

(c) Of the hydrologic methods, the Muskingum-
Cunge method is applicable to the widest range of chan-
nel slopes and inflowing hydrographs. This is due to the
fact that the Muskingum-Cunge technique is an approxi-
mation of the diffusion wave equations, and therefore can
be applied to channel slopes of a similar range in magni-
tude. The other hydrologic techniques use an approximate
relationship in place of the momentum equation. Experi-
ence has shown that these techniques should not be
applied to channels with slopes less than 2 ft/mi.
However, if there is gauged data available, some of the
parameters of the hydrologic methods can be calibrated to
produce the desired attenuation effects that occur in very
flat streams.

(4) Flow networks. In a dendritic stream system, if
the tributary flows or the main channel flows do not cause
significant backwater at the confluence of the two
streams, any of the hydraulic or hydrologic routing meth-
ods can be applied. If significant backwater does occur at
the confluence of two streams, then the hydraulic methods
that can account for backwater (full unsteady flow and
diffusion wave) should be applied. For full networks,
where the flow divides and possibly changes direction
during the event, only the full unsteady flow equations
and the diffusion wave equations can be applied.

(5) Subcritical and supercritical flow. During a
flood event, a stream may experience transitions between
subcritical and supercritical flow regimes. If the super-
critical flow reaches are long, or if it is important to cal-
culate an accurate stage within the supercritical reach, the
transitions between subcritical and supercritical flow
should be treated as internal boundary conditions and the
supercritical flow reach as a separate routing section.
This is normally accomplished with hydraulic routing
methods that have specific routines to handle supercritical
flow. In general, none of the hydrologic methods have
knowledge about the flow regime (supercritical or subcrit-
ical), since hydrologic methods are only concerned with
flows and not stages. If the supercritical flow reaches are
short, they will not have a noticeable impact on the dis-
charge hydrograph. Therefore, when it is only important
to calculate the discharge hydrograph, and not stages,
hydrologic routing methods can be used for reaches with
small sections of supercritical flow.

(6) Observed data. In general, if observed data are
not available, the routing methods that are more physi-
cally based are preferred and will be easier to apply.
When gauged data are available, all of the methods should
be calibrated to match observed flows and/or stages as
best as possible. The hydraulic methods, as well as the
Muskingum-Cunge technique, are considered physically
based in the sense that they only have one parameter
(roughness coefficient) that must be estimated or cali-
brated. The other hydrologic methods may have more
than one parameter to be estimated or calibrated. Many
of these parameters, such as the MuskingumX and the
number of subreaches (NSTPS), are not related directly to
physical aspects of the channel and inflowing hydrograph.
Because of this, these methods are generally not used in
ungauged situations. The final choice of a routing model
is also influenced by other factors, such as the required
accuracy, the type and availability of data, the type of
information desired (flow hydrographs, stages, velocities,
etc.), and the familiarity and experience of the user with a
given method. The modeler must take all of these factors
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into consideration when selecting an appropriate routing
technique for a specific problem. Table 9-3 contains a
list of some of the factors discussed previously, along
with some guidance as to which routing methods are

appropriate and which are not. This table should be used
as guidance in selecting an appropriate method for routing
discharge hydrographs. By no means is this table all
inclusive.

Table 9-3
Selecting the Appropriate Channel Routing Technique

Factors to consider in the selection of a
routing technique.

Methods that are appropriate for this
specific factor.

Methods that are not appropriate for this
factor.

1. No observed hydrograph data available
for calibration.

* Full Dynamic Wave
* Diffusion Wave
* Kinematic Wave
* Muskingum-Cunge

* Modified Puls
* Muskingum
* Working R&D

2. Significant backwater that will influence
discharge hydrograph.

* Full Dynamic Wave
* Diffusion Wave
* Modified Puls
* Working R&D

* Kinematic Wave
* Muskingum
* Muskingum-Cunge

3. Flood wave will go out of bank into the
flood plains.

* All hydraulic and hydrologic methods that
calculate hydraulic properties of main
channel separate from overbanks.

* Muskingum

4. Channel slope > 10 ft/mile

and

TSouo

do

≥ 171

* All methods presented * None

5. Channel slopes from 10 to 2 ft/mile and

TSouo

do

< 171

* Full Dynamic Wave
* Diffusion Wave
* Muskingum-Cunge
* Modified Puls
* Muskingum
* Working R&D

* Kinematic Wave

6. Channel slope < 2 ft/mile and

TSo











g
do

1/2

≥ 30

* Full Dynamic Wave
* Diffusion Wave
* Muskingum-Cunge

* Kinematic Wave
* Modified Puls
* Muskingum
* Working R&D

7. Channel slope < 2 ft/mile and

TSo











g
do

1/2

< 30

* Full Dynamic Wave * All others
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